Malicious Data Attacks on Smart Grid State Estimation: Attack Strategies and Countermeasures

Authors: O. Kosut, J. Liyan, R. J. Thomas and L. Tong

Presenter: Daehyun. Choi

Submitted in Partial Fulfillment of the Course Requirements for ECEN 689: Cyber Security of the Smart Grid Instructor: Dr. Deepa Kundur

Introduction

Problem Formulation

Strategies for Malicious Attacks(Attacker View)

Countermeasure(Control Center View)

Critical Assessment

Conclusions and Future works

Introduction

Problem Formulation

Strategies for Malicious Attacks(Attacker View)

Countermeasure(Control Center View)

Critical Assessment

Conclusions and Future works

Power System State Estimation

• **State estimation** is to process redundant measurements to obtain the best estimate of the current state of a power system

- The main task of the the state estimator is conducted in a control center, with the following three functions
 - **Observability** analysis(for unique solution)
 - **State estimation**(using a weighted least square algorithm)
 - Bad data processing(consisting of bad data detection and identification)

State Estimation Communication Topology

Motivation and Goal

- If an adversary hacks into the power grid and generates fake meter data, the control center may be misled by the state estimator.
- The main goals of this paper are to
 - consider the problem of constructing malicious data attack of smart grid state estimation(→ attacker view)
 - when the adversary can perform an unobservable attack(Minimum Size Unobservable Attack)
 - when the adversary cannot or does not execute an unobservable attack(Minimum Residue Energy Attack)
 - 2. propose the countermeasures that detect the presence of such attacks in a single central control center $(\rightarrow \text{ control center} \text{ view})$

Related Works

- Y. Liu, P.Ning and M. K. Reiter "False data injection attacks against state estimation in electric power grids " in ACM Conference on Computer and Communications Security, pp.21-32, 2009.
- D. Gorinevsky, S. Boyd and S. Poll "Estimation of faults in DC electrical power systems" Proc. 2009 American Control Conf., pp.4334-4339, June 2009.
- A key difference from the above two works is
 - the state is random variable \rightarrow Bayesian framework!!

Introduction

Problem Formulation

Strategies for Malicious Attacks(Attacker View)

Countermeasure(Control Center View)

Critical Assessment

Conclusions and Future works

A Bayesian Framework and MMSE Estimation

· Assume a linearized DC power flow model

z = Hx + a + e

where $e \sim \mathcal{N}(0, \Sigma_e)$, $a \in \mathcal{A}_k = \{a \in R^m : \|a\|_0 \leq k\}$.

• When *a* = 0, MMSE estimator of the state vector *x* is

$$\hat{x}(z) = \arg_{\hat{x}} \min E(\|x - \hat{x}(z)\|^2) = Kz$$

where $K = \Sigma_x H^T (H \Sigma_x H^T + \Sigma_e)^{-1}$.

With attack vector a, the mean square error is

Class Presentation, Daehyun. Choi

ECEN 689: Cyber Security of the Smart Grid, Spring 2011

Introduction

Problem Formulation

Strategies for Malicious Attacks(Attacker View)

Countermeasure(Control Center View)

Critical Assessment

Conclusions and Future works

Unobservable Attacks

According to Liu's paper,

• if there exists a nonzero k-sparse a for which a = Hc, then

$$z = Hx + a + e = H(x + c) + e$$

• An attack vector a is **unobservable** if it has the form a = Hc.

Theorem 1: A k-sparse attack vector a comprises an unobservable attack if and only if the network becomes unobservable when the k meters associated with the nonzero entries of a are removed from the network.

Remark: Here, the *k* meters belong to critical *k*-tuple measurements class.

Minimum Size Unobservable Attacks

When the adversary can perform an unobservable attack,

- The power system is modeled as an undirected graph (V, E)
 - -V represents the set of buses and E is the set of transmission lines.
- For a set of lines A ⊆ E, let g(A) and h(A) be the set of meters in A and be the number of connected components in the graph (V, E\A)

Theorem 2: For all $\mathcal{A} \subseteq E$, removing an arbitrary subset of $g(\mathcal{A})$ of size $|g(\mathcal{A})|-h(\mathcal{A})+2$ makes the system unobservable. Moreover, the minimum size unobservable attack can be found by minimizing $|g(\mathcal{A})|-h(\mathcal{A})+2$ over \mathcal{A} .

Remark: By Theorem 2, the adversary can find unobservable attacks. If |g(A)|-h(A)+2 can be minimized over all sets of edges A, the adversary can also find attacks using as few meters as possible.

Minimum Residue Energy Attack

When the adversary can't perform an unobservable attack,

• The estimation residue error is given by

$$r = Gz = GHx + Ga_{from attack} + Ge, G \triangleq I - HK$$

- Indeed, the attacker wish to
 - damage the control center \rightarrow increase $||Ka||_2^2$
 - be less detectable at the control center \rightarrow decrease $\|Ga\|_2^2$
- Therefore, we consider the following problem:

$$\min_{a \in \mathcal{A}_k} \|Ga\|_2^2 \quad \text{subject to} \quad \|Ka\|_2^2 \ge C.$$

Introduction

Problem Formulation

Strategies for Malicious Attacks(Attacker View)

Countermeasure(Control Center View)

Critical Assessment

Conclusions and Future works

Two classical bad data detectors

Based on the residual error $r = z - H\hat{x}$,

• The Chi-Squares test is given by

$$r^T \Sigma_e^{-1} r \stackrel{H_1}{\underset{H_0}{\gtrsim}} \eta$$

• The largest normalized residual test is given by

$$\max_{i} \frac{r_{i}}{\sigma_{r_{i}}} \overset{H_{1}}{\underset{H_{0}}{\gtrsim}} \eta$$

where σ_{r_i} is the standard deviation of the *i*th residual error r_i .

Generalized Likelihood Ratio Test(GLRT)

Consider a formulation of the detection problem at the control center.

$$egin{aligned} \mathcal{H}_0 &: z \sim \mathcal{N}(0, \Sigma_z) \ \mathcal{H}_1 &: z \sim \mathcal{N}(a, \Sigma_z), \ \ a \in \mathcal{A}_k ackslash 0 \end{aligned}$$

where $\Sigma_z \triangleq H \Sigma_x H^T + \Sigma_e$.

 Let f(z|a) be the Gaussian density function with mean a and covariance Σ_z,

$$f(z|a) = \frac{1}{(2\pi)^{\frac{n}{2}}|\Sigma_z|} \exp\left(-\frac{1}{2}(z-a)^T \Sigma_z^{-1}(z-a)\right)$$

Then, the GLRT is expressed as

$$L(z) \triangleq \frac{\max_{a \in \mathcal{A}_k} f(z|a)}{f(z|a=0)} \underset{H_0}{\overset{H_1}{\gtrless}} \eta$$

Class Presentation, Daehyun. Choi

ECEN 689: Cyber Security of the Smart Grid, Spring 2011

Generalized Likelihood Ratio Test(GLRT)(cont'd)

• The GLRT is rewritten by

$$\min_{a \in \mathcal{A}_k} a^T \Sigma_z^{-1} a - 2z^T \Sigma_z^{-1} a \overset{H_0}{\underset{H_1}{\gtrless}} \eta$$

• Finally, the GLRT reduces to solving

minimize
$$a^T \Sigma_z^{-1} a - 2z^T \Sigma_z^{-1} a$$

subject to $||a||_0 \leq k$
 $(||a||_1 \leq \gamma \text{ if } k \text{ is larger}).$

Simulation Results

Figure: Above: ROC Performance of GLRT for the 2 sparsity case. MSE with attack is 8db. SNR=10db. Below: AOC Performance of GLRT for the 2 sparsity case. False alarm rate is 0.05. SNR=10dB.

O. Kosut, L. Jia, R. J. Thomas and L. Tong "Malicious Data Attacks on Smart Grid State Estimation: Attack

Strategies and Countermeasures " Proc. IEEE International Conference on Smart Grid Communications,

Gaithersburg, Maryland, pp.220-225, October 2010.

Class Presentation, Daehyun. Choi

ECEN 689: Cyber Security of the Smart Grid, Spring 2011

Introduction

Problem Formulation

Strategies for Malicious Attacks(Attacker View)

Countermeasure(Control Center View)

Critical Assessment

Conclusions and Future works

Critical Assessment

- Considered malicious data attack problem using a graph theoretic approach(Network observability analysis).
- GLRT shows a good performance for a malicious attack detection, but not for identification.
- Needed for a new countermeasure in a (fully) distributed state estimation.
 - a new countermeasure need to be carefully designed considering error residual spread area.(Next slide..)

Administrative Area vs Error Residual Spread Area

Figure: IEEE 14-bus system

Introduction

Problem Formulation

Strategies for Malicious Attacks(Attacker View)

Countermeasure(Control Center View)

Critical Assessment

Conclusions and Future works

Conclusions and Future works

Conclusions

- present adversarial strategies for malicious data attacks
- propose countermeasure(GLRT) for the control center

Future works

- propose a novel countermeasure for malicious attack detection and identification
- a novel countermeasure should be implementable for large-scale AC power networks even in a distributed state estimation framework.

References

- O. Kosut, L. Jia, R. J. Thomas and L. Tong "Malicious Data Attacks on Smart Grid State Estimation: Attack Strategies and Countermeasures" Proc. IEEE International Conference on Smart Grid Communications, Gaithersburg, Maryland, pp.220-225, October 2010.
- O. Kosut, L. Jia, R. J. Thomas and L. Tong "On Malicious Data Attacks on Power System State Estimation" Proc. UPEC 2010, Cardiff, Wales, UK, August 2010.
- O. Kosut, "Adversaries In Networks", Ph.D. dissertation, Cornell University, August 2010.